Chromosome breakage by pairs of closely linked transposable elements of the Ac-Ds family in maize.

نویسندگان

  • H K Dooner
  • A Belachew
چکیده

Chromosome breaks and hence chromosomal rearrangements often occur in maize stocks harboring transposable elements (TEs), yet it is not clear what types of TE structures promote breakage. We have shown previously that chromosomes containing a complex transposon structure consisting of an Ac (Activator) element closely linked in direct orientation to a terminally deleted or fractured Ac (fAc) element have a strong tendency to break during endosperm development. Here we show that pairs of closely linked transposons with intact ends, either two Ac elements--a common product of Ac transposition--or an Ac and a Ds (Dissociation) element, can constitute chromosome-breaking structures, and that the frequency of breakage is inversely related to intertransposon distance. Similar structures may also be implicated in chromosome breaks in other eukaryotic TE systems known to produce chromosomal rearrangements. The present findings are discussed in light of a model of chromosome breakage that is based on the transposition of a partially replicated macrotransposon delimited by the outside ends of the two linked TEs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial configuration of transposable element Ac termini affects their ability to induce chromosomal breakage in maize.

Composite or closely linked maize (Zea mays) Ac/Ds transposable elements can induce chromosome breakage, but the precise configurations of Ac/Ds elements that can lead to chromosome breakage are not completely defined. Here, we determined the structures and chromosome breakage properties of 15 maize p1 alleles: each allele contains a fixed fractured Ac (fAc) element and a closely linked full-le...

متن کامل

Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition.

The transposable Dissociation (Ds) element of maize was first discovered as a site of high-frequency chromosome breakage. Because both Ds-mediated breakage and transposition require the presence of the Activator (Ac) element, it has been suggested that chromosome breakage may be the outcome of an aberrant transposition event. This idea is consistent with the finding that only complex structures...

متن کامل

Ac/Ds-induced chromosomal rearrangements in rice genomes

A closely-linked pair of Ac/Ds elements induces chromosomal rearrangements in Arabidopsis and maize. This report summarizes the Ac/Ds systems that generate an exceptionally high frequency of chromosomal rearrangements in rice genomes. From a line containing a single Ds element inserted at the OsRLG5 locus, plants containing a closely-linked pair of inversely-oriented Ds elements were obtained a...

متن کامل

Molecular evolution of the Ac/Ds transposable-element family in pearl millet and other grasses.

We report an Ac-like sequence from pearl millet (Pennisetum glaucum) and deletion derivative Ac-like sequences from pearl millet and another grass species, Bambusa multiplex. Sequence relationships between the pearl millet and maize Ac elements suggest that Ac/Ds transposable-element family is ancient. Further, the sequence identity between the Bambusa Ac-like sequence and maize Ac implies that...

متن کامل

A segmental deletion series generated by sister-chromatid transposition of Ac transposable elements in maize.

Certain configurations of maize Ac/Ds transposon termini can undergo alternative transposition reactions leading to chromosome breakage and various types of stable chromosome rearrangements. Here, we show that a particular allele of the maize p1 gene containing an intact Ac element and a nearby terminally deleted Ac element (fAc) can undergo sister-chromatid transposition (SCT) reactions that g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 129 3  شماره 

صفحات  -

تاریخ انتشار 1991